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Abstract

By building kinetic models of biological networks one may advance
the development of new modeling approaches while gaining insights
into the biology. We focus here on building a stochastic kinetic model
for the intracellular growth of vesicular stomatitis virus (VSV), a well-
studied virus that encodes five genes. The essential network of VSV
reactions creates challenges to stochastic simulation owing to (i) de-
layed reactions associated with transcription and genome replication,
(ii) production of large numbers of intermediate proteins by transla-
tion, and (iii) the presence of highly reactive intermediates that rapidly
fluctuate in their intracellular levels. We address these issues by devel-
oping a hybrid implementation of the model that combines a delayed
stochastic simulation algorithm (DSSA) with Langevin equations to
simulate the reactions that produce species in high numbers. Further,
we employ a quasi-steady state approximation (QSSA) to overcome
the computational burden of small time steps caused by highly reac-
tive species. The simulation is able to capture experimentally observed
patterns of viral gene expression. Moreover, the simulation suggests
that early levels of a low-abundance species, VSV L mRNA, play a key
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role in determining the production level of VSV genomes, transcripts,
and proteins within an infected cell. Ultimately, these results suggest
that stochastic gene expression contribute to the distribution of virus
progeny yields from infected cells.

1 Introduction

1.1 Stochastic Background

Virus infections are noisy. When a virus encounters a susceptible cell, it binds
to receptor molecules on the cell surface, initiating events that enable entry
of the virus into the cell and release of its genome, which triggers reactions
that ultimately pirate the biosynthetic resources of the cell to produce virus
progeny. These processes often involve small numbers: a single virus particle,
a handful of receptor molecules, or a single virus genome. The stochastic or
noisy behavior of reactions initiated by small numbers of reactants can be
especially accentuated in the case of viruses, where the functions encoded by
the virus genome often amplify intermediates through processes that can be
described by autocatalytic or positive feedback loops. Simulations of noisy
gene expression in model viruses support the notion that the noise associated
with small numbers of viral intermediates can significantly impact the be-
havior and productivity of virus infections [2, 32, 29]. Moreover, Delbrück’s
classical experiments on single cells infected by single virus particles showed
how infected cells could produce virus yields that span a broad range of one
to two orders of magnitude [8]. Delbrück further speculated that the source
of the large variations in yield might easily be accounted for by fluctuations
in autocatalytic reactions underlying the virus growth [8, 7].

To better understand mechanistically how noisy reactions may impact
the distribution of virus productivity one may develop stochastic kinetic
models of virus intracellular growth. In general, one would expect intrin-
sic fluctuations to impact the dynamics during the earliest stages of in-
fection when levels of viral species are low. These effects may result in
extinction of virus species from infected host cells or contribute to broad
distributions in virus progeny production. For low numbers of molecules,
a continuous or smooth description of the system is not strictly valid be-
cause the numbers of molecules are small integer values and reactions cause
integer jumps in these values. These systems are typically modeled as dis-
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crete jump Markov processes. The stochastic simulation algorithm (SSA),
also known as the Gillespie Algorithm [11], is an exact simulation method
for these Markov processes. The delayed stochastic simulation algorithm
(DSSA) is an extended version of the SSA. It accounts for delays that are
involved in various reactions, including gene transcription and replication
reactions, as well as protein translation reactions [5, 6]. Other methods di-
rectly analyze the master equation and approximation methods based on the
Fokker-Planck or Langevin equations [12, 13]. Several hybrid models, that
are based on the separation of time scales between fast and slow reactions,
have been proposed to reduce the computational effort of the full stochastic
models [16, 21, 23, 26, 15, 9, 24, 14, 25]. Partitioning based purely on fast
and slow reactions, however, does not produce an efficient simulation because
it cannot handle the rapid switching of low concentration species that takes
place in the VSV virus infection model.

The challenge of the current work is to advance a stochastic model of a
virus infection, allowing for initially low numbers of virus molecules at the
initiation of infection. While some species may be rapidly amplified, oth-
ers may stay at low numbers, and be produced and consumed with high
reaction rates, or take part in delayed reactions. Such features cannot, in
general, be handled by a simple simulation algorithm. Instead, the model
has to be implemented using a strategy that adapts the methods to the
ever-changing conditions of the simulation. Here we focus on advancing a
stochastic simulation strategy for the intracellular growth of vesicular stom-
atitis virus (VSV), a relatively well-characterized virus that carries an RNA
genome. As a foundation, we build on a deterministic model of VSV growth
that accounts for the production, interactions and decay of essential VSV
molecular species [19].

1.2 Elements of VSV Biology

Vesicular stomatitis virus (VSV) is a widely studied member of the Rhab-
doviridae family, which includes the rabies virus. It carries a single 11 kilo-
base negative-sense single-stranded RNA genome that encodes five genes, and
the molecular processes that define its reproduction within infected cells have
been the subject of extensive study [22]. The five genes encode five proteins:
the nucleocapsid protein N, the phosphoprotein P, the matrix protein M, the
glycoprotein G, and the large polymerase protein L. The latter-most protein
is used to transcribe the genome into its messages (mRNAs). These viral
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messages are then translated into their proteins using ribosomes and other
resources of the host cell. Every protein contributes essential functions for
the generation of viable virus progeny particles. The N protein encapsidates
the genome and stabilizes it, while at the same time it is responsible for the
switch between transcription and replication. Once the (−)RNA genome is
fully encapsidated by N protein, it serves as a template for the polymerase
to synthesize the anti-genome ((+)RNA)). The (+)RNA strand must also be
encapsidated by N proteins in order to serve as a template for synthesis of
the (−)RNA genome. The P protein also plays a role in the encapsidation
process of the genome as well as in the transcription and replication reac-
tions. The G protein forms spikes at the membrane of the host cell, which
are then incorporated into the viral membrane as progeny viruses bud from
the cell surface. The G protein spikes on the outside of the virus particles
enable the virus to bind to other susceptible cells and initiate new infections.
The M protein is part of the inner membrane of the virus, and it serves to
shut down the host and the viral translation. Although the P, M and G pro-
teins have distinct roles in the virus infection cycle, the current work focuses
on early stages of infection, and for simplicity we neglect their contributions
and processes of viral binding, particle entry and genome release into the cell
cytoplasm. A single VSV particle consists of one (−)RNA genome strand,
and about 1258 N, 466 P, 1826 M, 1205 G and 50 L proteins, components
that serve to define initial intracellular conditions for our simulations.

An overview of the VSV reaction network is shown in Fig. 1. The (−)RNA
and (+)RNA genomes include the naked and the partially encapsidated
strands, but not the fully encapsidated strands. (I) shows the encapsidation
reaction of the (−)RNA genome. The (+)RNA encapsidation follows the
same procedure. In (II) we can see how the replication of the encapsidated
(−)RNA genome consumes one L protein at initiation and how the (+)RNA
template is formed. The L protein is then released with the completion
of the (+)RNA strand synthesis. Synthesis of the (−)RNA strand follows a
symmetric mechanism, employing the encapsidated (+)RNA genome as tem-
plate. (III) shows how the mRNAs are formed from the naked or partially
encapsidated (−)RNA genome. The L protein can be released at each gene
junction, which leads to different ratios of mRNAs. The genome is shown for
a recombinant form of VSV that encodes an additional protein, green fluo-
rescent protein(GFP); it has been found experimentally that carrying GFP
in this position has minimal effect on virus yields (unpublished result) while
serving as a useful experimental marker to identify and isolate single infected
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cells.

2 Reactions

Our model includes transcription of the genome to produce viral mRNAs,
translation of these message RNA into their corresponding proteins, and
replication reactions to synthesize the full length genomic and anti-genomic
RNA strands. The transcription reactions are treated as delay reactions,
while the translation reactions are non-delayed. Further, the model includes
a chain reaction to encapsidate both (+)RNA and (−)RNA genomes, and
replication reactions that use the fully encapsidated genome (+)RNA and
(−)RNA as templates.

Every transcription reaction involves a different delay. They are initiated
at one time but the products appear much later, with time delays ranging
from several minutes to more than one hour. These reactions are modeled
with a delayed stochastic simulation algorithm (DSSA). Every transcription
reaction consumes one polymerase (L protein) at initiation and releases it
upon completion. The translation reactions are much faster than the tran-
scription reactions and are therefore modeled with the simpler stochastic
simulation algorithm (SSA). The replication reactions consist of non-delayed
chain reactions to encapsidate the (+) and (−)RNA genome and a delayed
replication reaction that consumes the polymerase at initiation and releases
it upon completion of the process. In the following, the reactions that involve
a delay are marked with a (∗). All reactions are modeled as irreversible with
rate expressions based on mass action kinetics.
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Figure 1: Schematic of vesicular stomatitis virus (VSV) genome, reaction
network, and essential reactions.
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2.1 Transcription

The transcription reactions transcribe all genes of the genome into their
mRNAs, which serve as templates for the viral proteins.

(−)RNA+ L+ S1

k1(1)−−→ (−)RNA+ L+NmRNA (∗) (1a)

(−)RNA+ L+ S1

k1(2)−−→ (−)RNA+ L+NmRNA + PmRNA (∗) (1b)

(−)RNA+ L+ S1

k1(3)−−→ (−)RNA+ L+NmRNA + PmRNA +

MmRNA (∗) (1c)

(−)RNA+ L+ S1

k1(4)−−→ (−)RNA+ L+NmRNA + PmRNA +

MmRNA +GmRNA (∗) (1d)

(−)RNA+ L+ S1

k1(5)−−→ (−)RNA+ L+NmRNA + PmRNA +

MmRNA +GmRNA +GFPmRNA (∗) (1e)

(−)RNA+ L+ S1

k1(6)−−→ (−)RNA+ L+NmRNA + PmRNA +

MmRNA +GmRNA +GFPmRNA +

LmRNA (∗) (1f)

The (−)RNA in this equation stands for all (−)RNA genomes that are not
fully encapsidated. The model parameters and delays are given in Table 1.
The six transcription reactions involve different delays. The delays have been
calculated by dividing the nucleotide length of the genes by the L polymerase
elongation rate [17]. While L is released with the last mRNA, messages more
closely positioned to the 3’ transcription initiation site of the genome are
released earlier in time. The initiation rates are calculated by multiplying the
different attenuation factors Φ, [4, 17, 22], with the transcription initiation
rate k∗1, [33]. The L protein does not always read through the whole genome,
but stops at intergenic regions. The attenuation factors reflect the probability
of the L protein transcribing until it reaches the intergenic regions after
each gene, where it may fall off. The nucleic acids S1 are assumed to be in
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abundance. The transcription reactions have the following rate expressions.

r1(1) = k1(1)(−)RNA · L (2a)

r1(2) = k1(2)(−)RNA · L (2b)

r1(3) = k1(3)(−)RNA · L (2c)

r1(4) = k1(4)(−)RNA · L (2d)

r1(5) = k1(5)(−)RNA · L (2e)

r1(6) = k1(6)(−)RNA · L (2f)

2.2 Translation

The translation reactions produce proteins by translating the messages (mRNAs)
using the host cell ribosomes:

NmRNA + S2
k2−→ NmRNA +N (3a)

PmRNA + S2
k2−→ PmRNA + P (3b)

MmRNA + S2
k2−→ MmRNA +M (3c)

GmRNA + S2
k2−→ GmRNA +G (3d)

GFPmRNA + S2
k2−→ GFPmRNA +GFP (3e)

LmRNA + S2
k2−→ LmRNA + L (3f)

The parameters for the translation reactions are given in Table 2. The trans-
lation rate constant k2 is the same for all translation reactions as the riboso-
mal elongation rate is the same for all mRNAs. It is calculated by dividing
the translational elongation rate by the ribosome footprint [28] [19]. The
ribosome footprint is a parameter that has been estimated in our previous
deterministic model [19] by fitting it to four independent sets of data from
the literature and our own experimental data. The ribosomes (S2) are as-
sumed to be unlimited host resources. The delays associated with translation,
which are much smaller than the transcriptional delays, are neglected. The
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Table 1: Model parameters and delays of the VSV transcription reactions.

Parameter Symbol Φ [4, 17, 22] Value

Initiation rate constant [33] k∗1 0.0461 s−1

Reaction (1a) rate constant k1(1) 1.0 0.0461 s−1

Reaction (1b) rate constant k1(2) .75 0.0346 s−1

Reaction (1c) rate constant k1(3) .5625 0.0259 s−1

Reaction (1d) rate constant k1(4) .422 0.0195 s−1

Reaction (1e) rate constant k1(5) .422 0.0195 s−1

Reaction (1f) rate constant k1(6) .0633 0.0029 s−1

Polymerase elongation rate [17] ke,p 3.7 nt/s

Length of N gene [22] lN 1, 333 nt

Length of P gene [22] lP 822 nt

Length of M gene [22] lM 838 nt

Length of G gene [22] lG 1, 672 nt

Length of GFP gene [22] lGFP 720 nt

Length of L gene [22] lL 6, 380 nt

Reaction (1a) delay τt1 600.27 s

Reaction (1b) delay τt2 1062.4 s

Reaction (1c) delay τt3 1528.9 s

Reaction (1d) delay τt4 2220.8 s

Reaction (1e) delay τt5 2655.4 s

Reaction (1f) delay τt6 4619.7 s
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Table 2: Model parameters of the VSV translation reactions.

Parameter Symbol Value

Ribosome elongation rate [28] ke,r 18 nt/s

Ribosome foot print [19] srib 238.5 nt

Translation rate constant k2 0.0755 s−1

translation reactions have the following rate expressions.

r2(1) = k2NmRNA (4a)

r2(2) = k2PmRNA (4b)

r2(3) = k2MmRNA (4c)

r2(4) = k2GmRNA (4d)

r2(5) = k2GFPmRNA (4e)

r2(6) = k2LmRNA (4f)

2.3 Replication

The replication consists of four different types of reactions. In order to syn-
thesize a copy of the (−)strand RNA genome, we need all four reactions to
happen in the following order. The (−)strand RNA has to be encapsidated
with 1258 N proteins before it can serve as a template for (+)strand RNAs
via polymerase-mediated replication. The (+)strand RNA also has to be en-
capsidated by 1258 N proteins in order to serve as a template to synthesize
a naked (−)strand RNA. The full set of encapsidation reactions, modeled as
a set of chain reactions, follows:
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(−)RNA+ N
k3−→ (−)RNA1

(−)RNA1 + N
k3−→ (−)RNA2

· · · k3−→ · · ·
(−)RNA1257 + N

k3−→ (−)RNA1258

(−)RNA1258 + L
k3−→ (−)RNA1258 + (+)RNA+ L (∗)

(+)RNA+ N
k3−→ (+)RNA1

(+)RNA1 + N
k3−→ (+)RNA2

· · · k3−→ · · ·
(+)RNA1257 + N

k3−→ (+)RNA1258

(+)RNA1258 + L
50·k3−−−→ (+)RNA1258 + (−)RNA+ L (∗) (5)

An exact stochastic model would include the simulation of all chain reactions
and all species that take part in it. Full simulation of this model is compu-
tationally expensive owing to the memory needed to store all the states and
track their changes. Fig. 2 shows one such simulation run that includes all
chain reactions described in Equation 5. (−)RNA genomes includes all naked
and partially encapsidated (−)RNA strands, but not the fully encapsidated
(−)RNA strands. The first drop (I) in the N protein level is the first full
encapsidation reaction described in (I) in Fig. 1. The delay before the first N
mRNA occurs is the time required to produce transcripts from the genome,
which has been explained in (III) in Fig. 1. The time between (I) and (III) is
the time it takes to synthesize the whole genome, which has been described in
(II) in Fig. 1. It can be seen that the N protein is highly reactive and begins
to fluctuate intensively right after (II), when the first (+)RNA genomes are
replicated, which consume the N protein.

The simulation was stopped at 100,000 iterations. The full infection cycle
cannot be simulated with the model used for this simulation run, because of
the fast switching species in the system. It can be seen that all the production
and consumption reactions of the N protein dictate the step size, while its
level fluctuates intensively. To reduce the computational cost we implement
full model up to the point where N protein begins to switch quickly. Then,
all chain reactions are implemented using only one single delayed reaction
for the full encapsidation of the genome, where the delay is calculated using
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the mean of the QSSA distribution of the N protein that we will describe
later. The encapsidation reaction of this model has the following form

(−)RNA+ 1258N
k3−→ (−)RNA1258 (∗) (6a)

(−)RNA1258 + L
k4−→ (−)RNA1258 + (+)RNA+ L (∗) (6b)

(+)RNA+ 1258N
k3−→ (+)RNA1258 (∗) (6c)

(+)RNA1258 + L
k5−→ (+)RNA1258 + (−)RNA+ L (∗) (6d)

The replication parameters and delays are given in Table 3. The initiation
of the (+)RNA synthesis reaction and all chain reactions have the same rate
constant as the transcription initiation rate constant k∗1. It has been found
that the promoter strength of the fully encapsidated (+)RNA strand is higher
than the promoter strength of the negative strand [27, 10]. The (+)RNA
strand can be found in a level that is up to 50 times higher than the level of
the (−)RNA strand. Therefore, the initiation reaction rate constant for the
(−)RNA synthesis reaction was set at a value 50 times higher than the rate
constant of the (+)RNA synthesis. The total time needed for the genome
synthesis is almost an hour and it is calculated by dividing the total genome
nucleotide length by the L polymerase elongation rate [17]. The delay time
for the encapsidation reaction varies with the total number of genomes and
the mean of the QSSA distribution of the N protein. There are methods to
calculate the delay time via a gamma distribution of multiple reaction events
if the reaction rate is not changing over time. However, this is not the case for
the chain reaction rate in this model, where the changes in the highly reactive
protein N and the genome level cause fluctuating reaction rates. The method
to calculate the delay and the QSSA distribution of the N protein level is
discussed later. The replication reactions have the following rate expressions.

r3(1) = k3(−)RNA ·N (7a)

r3(2) = k4(−)RNA1258 · L (7b)

r3(3) = k3(+)RNA ·N (7c)

r3(4) = k5(+)RNA1258 · L (7d)
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Table 3: Model parameters and delays of the VSV replication reactions.

Parameter Symbol Value

Length of genome [22] lg 11, 765 nt

Polymerase elongation rate [17] ke,p 3.7 nt/s

Reaction (6a,6b) rate constant [33] k3 0.0461 s−1

Reaction (6b) rate constant [33] k4 0.0461 s−1

Reaction (6d) rate constant [33] k5 2.305 s−1

Reaction (6a) delay τr1 varies

Reaction (6b) delay τr2 3179.7 s

Reaction (6c) delay τr3 varies

Reaction (6d) delay τr4 3179.7 s

2.4 Host Factors

Among multiple host factors or characteristics that could influence our reac-
tion network, we consider only the cell size, which we assume, for simplicity,
to be constant during the infection cycle. Cell size is given in Table 4. The
shape of the virus is assumed to be spherical and we used average diameters
of BHK host cells to estimate the volume of the host cells. Reaction rates
depending on concentrations that have been derived from experimental data
is converted into molar reaction rates using this average host cell volume.

Table 4: Host parameters of the BHK-21 cells.

Parameter Symbol Value

Average cell diameter d 16 µm

Average cell volume v 2140 (µm)3
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2.5 Delayed Stochastic Simulation Algorithm (DSSA)

The model is implemented with a delay stochastic simulation algorithm
(DSSA) developed by Bratsun et al. [6] and Barrio et al. [5]. The delays
have to be treated carefully because all delayed reactions consume species
upon initiation and release several products at different times. The DSSA
handles delayed and non-delayed reactions, and is an extended version of the
original Gillespie Algorithm [11]. The following algorithm uses waiting and
delay times, and also delayed reactions that change the state of the system at
both initiation and completion. The stoichiometric matrix of the non-delayed
reactions and the initiation of delayed reactions is denoted νi, and the stoi-
chiometric matrix of the completion of the delayed reactions is denoted νd.
The stored reaction times are saved in Td.

1. Set time t equal to zero, the number of species x to x0 and the first
stored completion time td to ∞

2. Calculate all m reaction rates, rj(x) = kjaj(x)

3. Calculate the total reaction rate, rtot =
∑m

j=1 rj

4. Generate two random numbers (p1, p2) uniformly distributed on (0,1)

5. Calculate the stochastic time step ∆t = − ln(p1)/rtot

6. if there is a stored reaction n to finish in [t, t+ ∆t):

• Discard steps 4–5 and update time t = min(Td) = td

• Update species number x = x+ νd(n)

• Repeat steps 2–7 while t ≤ tfinal

7. else:

• Find reaction n, such that
∑n−1

j=1 rj(x) < p2rtot ≤
∑m

j=n rj(x)

• Update time t = t+ ∆t

• Update species number x = x+ νi(n)

• If reaction is delayed, store the time t + τ at which the system
should be updated according to the completion of reaction n

• Repeat steps 2–7 while t ≤ tfinal
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2.6 The Langevin Equation

Initial runs indicated that some species were produced at levels in the mil-
lions of molecules (not shown), significantly reducing the speed of the simu-
lation. To enable faster simulation an approximation was employed to allow
for larger time steps, while still accounting for fluctuations. A method that
has already been explored in various stochastic models is the use of Langevin
equations [30, 18]. The formulation of the chemical Langevin equation has
been addressed by Gillespie [13]. The Langevin equation is a good approxi-
mation under certain conditions that may change during a simulation run.

x(i+ 1) = x(i) + r∆t+
√
r∆t R R ∼ N(0, 1) (8)

The equation above characterizes a first order approximation of a continuous
time stochastic process, in which x(i + 1) is the next state, x(i) is the ini-
tial state, r∆t is the first order change in x(i), and

√
r∆t R is the standard

deviation of that first order change, multiplied with a normally distributed
random number R. Therefore, the next state is not only calculated by the
mean of the reaction rate, but by a normally distributed probability distribu-
tion around that mean. This equation is valid only when the rate r is large
and the time step is chosen so that the change in x is small. The number
of all species that are influenced by reaction r must therefore be large as
well. Then the reaction can be modeled with a Langevin equation and is not
updated as part of the DSSA. The simulation algorithm has to be capable of
switching between the implementation via the Langevin equations and the
DSSA.

2.7 QSSA on the N Protein

The N protein is a highly reactive species in the system. It switches among
small integer values so the fast time scale of N protein fluctuations cannot be
treated by partitioning the system into fast and slow reactions. Model reduc-
tion methods for highly reactive species have recently been derived by [20].
We next present how to apply that reduction method to handle the N pro-
tein. The N protein is produced by its mRNA with a high rate, while the N
protein is consumed by both positive and negative RNA encapsidation pro-
cesses. All rates for the chain reactions are calculated by the same reaction
rate constant k3. The NmRNA and the genomes are present in large amounts,
while N is highly reactive. Considering the NmRNA and the genome levels to
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be constant at some values over some interval of interest, the master equation
for N can be written as follows:

dP (N, t)

dt
= −k2NmRNAPN + k2NmRNAPN−1

−k3

1257∑
i=0

((−)RNAi + (+)RNAi)NPN

+k3

1257∑
i=0

((−)RNAi + (+)RNAi)(N + 1)PN+1 (9)

in which PN is shorthand for P (N, t). If the production and consumption
rates are high such that N equilibrates to its steady-state condition on a fast
time scale compared to the evolution of level mRNA and the genomes, the
steady-state probability density of N can be found by setting dP (N, t)/dt =
0. Using

r1 = k2NmRNA

r2 = k3

1257∑
i=0

((−)RNAi + (+)RNAi) (10)

the following equation can be derived:

0 = −r1PN + r1PN−1 − r2NPN + r2(N + 1)PN+1 (11)

Evaluating this equation for N = 0,1,2,...

N = 0 0 = −r1P0 + r2P1

N = 1 0 = −r1P1 + r1P0 − r2P1︸ ︷︷ ︸
zero from N = 0

+2r2P2

N = 2 0 = −r1P2 + r1P1 − 2r2P2︸ ︷︷ ︸
zero from N = 1

+3r2P3

· · · · · ·
N = n 0 = −r1Pn + r1Pn−1 − nr2Pn︸ ︷︷ ︸

zero from N = n− 1

+(n+ 1)r2Pn+1 (12)

This relation provides the following recursion in terms of P0.

PN =
1

N
αPN−1

PN =
1

N !
αNP0 α =

r1
r2

=
k2NmRNA

k3

∑1257
i=0 ((−)RNAi + (+)RNAi)

(13)
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Summing PN over N gives us:

∞∑
N=0

PN = (1 +
α

1!
+
α2

2!
+
α3

3!
+ · · · )P0

1 = eαP0

P0 = e−α (14)

The quasi-steady probability density of N is therefore:

PN =
1

N !
αNe−α (15)

2.8 Delayed Replication Reaction

As mentioned earlier, the encapsidation reaction of the genome is modeled
as a delayed reaction. The reaction rate constant k3 for all chain reactions
is the same. When the distribution of the N protein stays constant over the
amount of time that it takes to encapsidate a whole genome, the average
reaction rate for a single chain reaction is calculated using only the mean of
the QSSA distribution derived above. All chain reactions follow the same
reaction rate and time, and summing over all reaction times, the total time
needed to encapsidate the whole genome can be calculated. One should
note that the resulting delay is an approximation that does not reflect the
full stochasticity of all encapsidation reactions. The approximation allows
simulation to larger times, however, by avoiding the firing of all single chain
reactions occurring at small time steps. In the full model, all chain reactions
can then be modeled as a delayed reaction that is initiated by the first chain
reaction with the N protein level drawn from the QSSA probability density
in Equation 15. All delayed chain reactions are stored in Td,rep. When the
distribution of N changes, and therefore the reaction rate and the delay time
changes, the remaining time of each stored delayed encapsidation reaction
has to be updated accordingly. This method will be described subsequently.

3 Simulation Strategy

The VSV model in this work consists of a variety of delayed and non-delayed
reactions that cannot be simulated by only using the DSSA owing to the high
computational burden of the fast reactions. Our simulation strategy focuses
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on combining different methods and approximations to attain a computa-
tionally inexpensive and exact stochastic simulation of the model.

3.1 Hybrid Langevin Implementation

Computational efficiency can be gained if reaction systems can be partitioned
into subsets of different time scales, or fast and slow reaction subsets [16, 21].
These methods can be applied only when molecule levels are high, but the
methods do not work accurately for fast switching states at low levels. In
this work, the fast reactions are further divided into two sets: those that
influence molecules present at high numbers only and those that influence
molecules present at low numbers. The “high” or “low” molecule number fast
reactions are approximated via Langevin equations or sampled as stochastic
events, respectively. For this model, we separated “high” and “low” molecule
number fast reactions by a threshold set to nsw = 100, which divides all
fast reactions into m1 “low” molecule number fast reactions and m2 “high”
molecule number fast reactions. The value of nsw was chosen by comparing
the solution of the full model with the approximate model using different
nsw values and choosing the smallest value for which the approximate model
remained in good agreement with the full model. The maximum Langevin
step is set to a value that we do not change the molecular numbers more
than one percent, tol = 0.01, and in no case exceed a maximum stepsize,
∆̄h = 10 s. When the stochastic step is bigger than the Langevin step,
only the continuous Langevin states are updated and the stochastic time
step is discarded. This is valid because the reaction rates are exponentially
distributed and therefore memoryless. Using this separation, one may define
a hybrid Langevin algorithm:

1. Set time t equal to zero, the number of species x to x0 and define nsw

2. Separate the reactions into “high” and “low” molecule fast reactions
by comparing nsw to all non-zero stoichiometric species of each fast
reaction

3. Round all non-integer molecule levels that are smaller than nsw

4. Calculate all “low” molecule number fast reaction rates, rl = klal(x)
and the “high” molecule number fast reaction rates, rh = khah(x)

5. Calculate the total “low” molecule number reaction rate, rtot =
∑m1

l=1 rl
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6. Generate two random numbers (p1, p2) uniformly distributed on (0,1)

7. Calculate the stochastic time step ∆lt = − ln(p1)/rtot

8. Calculate the maximum Langevin step
∆ht = min(∆̄h, tol ·min(abs(xh/rh)))

9. if ∆lt ≤ ∆ht

• Set time step ∆t = ∆lt and update t = t+ ∆t

• Find reaction α, such that
∑α−1

l=1 rl < p2rtot ≤
∑m1

l=α rl

• Update species number x = x+ να

10. else

• Set time step ∆t = ∆ht and update t = t+ ∆t

11. Generate m2 random numbers R ∼ N(0, 1)

12. Update the Langevin part xh = xh + rh∆t +
√
rh∆t ·R

13. Repeat steps 2–11, while t < tfinal

This algorithm is much faster than the full SSA when the reaction network
has a “fast” reaction subset and it still captures fluctuations of reactions with
high molecule levels via Langevin equations. The separation of reactions is
implemented within the algorithm, not off-line. This gives the system the
flexibility to run exact stochastic sampling for fast reactions affecting low
molecule numbers and via Langevin equations for fast reactions affecting only
high molecule levels. It can also be extended for use with a DSSA. The same
algorithm can be used for the initiation reactions of the DSSA, but in addition
∆lt and ∆ht have to be compared to the first stored completion time of the
delayed reactions td = min(Td). If td ≤ t+ ∆lt and td ≤ t+ ∆ht, the delayed
reaction completes. If not, steps 9–11 of the hybrid Langevin algorithm have
to be followed; if a delayed reaction is initiated, that information is stored
at time t + τ and the system is updated at the completion of the delayed
reaction.

The QSSA can be used for the fast switching state in the system. If a state
equilibrates to its steady-state condition on a time scale that is fast compared
to the evolution of other species that are involved in reactions with this state,
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then we find the steady state probability density for this state as mentioned
earlier. In the case of the N protein, the simulation switches to the QSSA
of N at around t ≈ 1.1 hr as shown in Figure 2. Instead of modeling all
production reactions, the N protein level is calculated by drawing randomly
from its probability density at each time step. The approximated N protein
level is used to calculate the initiation reaction rate rencap and the delay time
τencap of each encapsidation reaction. When the mean α of the N steady-
state probability density is changing, all stored reaction delays Td,rep have to
be updated using the new delay time.

rencap(i) = k3 · α(i)

τencap(i) = 1258 · 1

rencap(i)

Td,rep(i) =
Td,rep(i− 1)−∆

τchain(i− 1)
· τchain(i) (16)

Although the QSSA on N allows us to take larger time steps, the L protein
also exhibits fast switching at low molecule levels. An approximation for the
delayed species L will need to be developed before the simulation can be run
to the end of the viral infection.

4 Simulation Results

The complexity of our model of the VSV reaction network lies in the cou-
pling of the fast switching species and the delayed reactions. We are able to
implement our model using Langevin equations and the QSSA assumption
for the N protein, which allows us to take larger time steps and simulate
further in time. Fig. 3, Fig. 4 and Fig. 5 show the means of the genomes, the
viral mRNAs and the viral proteins, respectively, for 1000 simulations. In
Fig. 3 we find that the first (+)RNA appears shortly after one hour, which
is the time required to encapsidate and replicate from the (−)RNA genomic
template. Owing to the delay and the transcriptional attenuation between
adjacent genes, our simulation shows a gradual decrease of the mRNA level,
as shown in Fig. 4 following N > P > M > G > GFP > L. The proteins in
Fig. 5 show the same order for the P , M , G and GFP proteins because they
are not currently implemented in other reactions. The levels of free N and L
proteins rapidly fluctuate because they are rapidly produced and consumed,
so these free protein levels deviate from the pattern observed for their mRNA
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Figure 3: Mean of the genome levels versus time. (−)RNA includes all naked,
partially and fully encapsidated (−)RNA strands, and (+)RNA includes all
naked, partially and fully encapsidated (+)RNA strands.

expression levels. More simulation runs would be needed to obtain smoother
mean values in the levels of free N and L proteins.

An intriguing result is the emergence of clusters in the distribution of
(−)RNA genome levels across 1000 simulation runs, as shown in Fig. 6.
These clusters arise owing to the sensitivity of (−)RNA genome replication
to the availability of polymerase, reflected in L protein, the VSV intermediate
that is present at the lowest levels in the model. Here the (−)RNA genome
includes all forms of the molecule: (−)RNA strands that are naked as well as
partially and fully encapsidated by N protein. We see that the mean level of
(−)RNA genome increases over time and that the distribution divides into
clusters beginning at about 2.5 hr post infection (HPI). The clusters arise
because formation of L mRNA during the first round of transcription from
the initial entering (−)RNA genome is a rare event, yet this event is essential
for the early production of L protein, which is required for initial VSV gene
expression and replication of the (−)RNA genome. To better appreciate the
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Figure 4: Mean of mRNA levels versus time.

dependence of (−)RNA genome production on the early production of L
mRNA one may examine how the level of (−)RNA genomes at 4 hr post-
infection depends on the level of L mRNA at 1.5 hr post-infection, as shown
in Fig. 7. Here the relatively rare infected cells that have produced five
L mRNA molecules by 1.5 hr produce about a factor of two more (−)RNA
genomes at 4 hr than the relatively common infected cells that have produced
one L mRNA molecule by 1.5 hr post-infection.

The distribution of GFP levels at different times, shown in Fig. 8 share
similarities with the distribution of (−)RNA genomes. Both exhibit a sep-
aration of populations across their distributions. However, the separation
emerges at a later time in the case of GFP protein, reflecting the delayed im-
pact of (−)RNA genome production on the subsequent production of virus-
encoded mRNAs and protein.
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Figure 5: Mean of protein levels versus time.

5 Discussion

Recent efforts toward understanding the behavior of stochastic reaction net-
works have focused on reducing the complexity and computational burden in
simulating their behavior, especially in cases involving delayed reactions, re-
actions that produce high levels of essential intermediates, or highly reactive
species. However, no single approach enables efficient stochastic simulation
of a core reaction network for the growth of VSV, an experimentally well-
studied virus. Processes of viral transcription and genome replication involve
significant delays, so it is appropriate to employ a delayed stochastic simula-
tion algorithm (DSSA). Fast and productive reactions, such as protein trans-
lation, generate high numbers of protein molecules; here, the use of Langevin
equations can enable simulation of their trajectories while minimizing their
computational burden. In addition, simulation of highly reactive species,
such as the rapid formation and depletion of viral N protein by translation
and genome encapsidation, respectively, motivate the development of a quasi-
steady state approximation (QSSA) to avoid explicit and costly simulation

24

proteins.html


0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000

fr
eq

u
en

cy

(−)RNA molecules

t = 2.5 hr

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

fr
eq

u
en

cy

(−)RNA molecules

t = 3 hr

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000

fr
eq

u
en

cy

(−)RNA molecules

t = 4 hr

Figure 6: Distribution of the (−)RNA at t = 2.5, 3, and 4 hr for 1000 simu-
lations.
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Figure 7: The (−)RNA genome level at 4 hr versus the L mRNA level at
1.5 hr. Numbers specify how many simulations expressed the corresponding
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of every reaction.
By combining these approaches we were able to simulate essential early

processes of VSV intracellular infections. These include transcription and
translation of viral mRNA and proteins, respectively, regulation of transcrip-
tion by intergenic attenuation, genomic encapsidation by the nucleocapsid
(N) protein, and genome replication by the viral polymerase. Our simula-
tions are consistent with experimentally observed patterns of viral mRNA
expression. Specifically, the sequential expression of viral genes in the simu-
lation, with mRNA appearing first for gene N, followed by P, M, G, and L,
agree with the observed sequence inferred from in vitro transcription studies
of VSV [3, 1]. Moreover, the gradient in the level of gene expression, with
mRNA for gene N at the highest level, followed by P, M, G, and L, agree
with the gradient in the level of expression observed in VSV infected cells [31].
More interesting, our simulations suggest that early levels of a low-abundance
species, L mRNA, play an important role in determining the production of
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Figure 8: Distribution of the GFP at t = 3.5 and 4 hr for 1000 simulations.

(−)RNA genomes, viral transcripts, and ultimately viral proteins within an
infected cell.

Ultimately, stochastic gene expression may contribute to the distribution
of VSV yields from infected cells. Our recent experimental study of VSV
production from single infected cells revealed levels of virus production that
spanned 1000-fold, a range that could not be solely accounted for by genetic
or environmental factors [34]. Ongoing studies will aim to quantify potential
roles for stochastic processes in virus growth.

Simulating the distributions of virus yields will require that the current
simulation be extended to account for a full infection cycle. Challenges await.
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For example, like free N protein, levels of free L protein fluctuate rapidly, and
L protein is also involved in the delayed transcription and genome replication
reactions. Further analysis will need to be done to calculate a probability
density for L protein, as we did for N protein. This analysis is not straight-
forward because of the effect of the delayed reactions initiated in the past
that influence the present level of L protein. When this distribution can be
calculated, the system could be updated via delayed Langevin equations for
the species at high molecule levels that are involved in the delayed reactions.
Further challenges await. For example, translation reactions have been im-
plemented here without delays because their delays are considered to be short
relative to delays associated with transcription reactions, and there is uncer-
tainty in spacing between active ribosomes on a transcript. If one assumes
an abundance of host ribosomes, then the ribosomal spacing can define the
rate of the protein production and delays can be neglected. However, many
viruses divert, inhibit, and shut down host translation resources, so one may
need to relax assumptions that host ribosomes are plentiful, and delays may
at some stage be appropriate to incorporate into our descriptions of protein
synthesis.

Finally, taking a broader perspective, all viruses must make mRNA, syn-
thesize proteins, and construct multi-component assemblies. We have shown
here how stochastic simulation of such processes can be treated in the special
case of VSV. Given the many common features that diverse virus share, we
anticipate that the approaches developed here may find useful applications
in simulating the intracellular growth of diverse viruses.

Acknowledgment

We are grateful for financial support from the NIH through a Phased Inno-
vation Award (R21AI071197), the NSF through a Focused Research Group
grant (DMS-0553687), and industrial members of the Texas-Wisconsin Mod-
eling and Control Consortium. David Anderson, Gheorghe Craciun, Tom
Kurtz, and Rishi Srivastava contributed helpful discussions. All simulations
were performed using Octave (http://www.octave.org), which is freely dis-
tributed under the terms of the GNU General Public License.

28



References

[1] G. Abraham and A. K. Banerjee. Sequential transcription of the genes of
vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA, 73(5):1504–1508,
1976.

[2] A. Arkin, J. Ross, and H. McAdams. Stochastic kinetic analysis of de-
velopmental pathway bifurcation in phage lambda-infected Escherichia
coli cells. Genetics, 149(4):1633–1648, August 1998.

[3] L. A. Ball and C. N. White. Order of transcription of genes of vesicular
stomatitis virus. Proc. Natl. Acad. Sci. USA, 73(2):442–446, 1976.

[4] J. N. Barr, S. P. J. Whelan, and G. W. Wertz. Transcriptional con-
trol of the RNA-dependent RNA polymerase of vesicular stomatitis
virus. Biochim. Biophys. Acta, Gene Struct. Expression, 1577(2):337–
353, September 13 2002.

[5] M. Barrio, K. Burrage, A. Leier, and T. Tian. Oscillatory regulation of
hes1: Discrete stochastic delay modelling and simulation. PLoS Comput.
Biol., 2(9):e117, September 2006.

[6] D. Bratsun, D. Volfson, L. S. Tsimring, and J. Hasty. Delay-induced
stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. USA,
102(41):14593–14598, October 2005.

[7] M. Delbrück. Statistical fluctuations in autocatalytic reactions. J.
Chem. Phys., 8:120–124, 1940.

[8] M. Delbrück. The burst size distribution in the growth of bacterial
viruses (bacteriophages). J. Bact., 50:131–135, 1945.

[9] W. E, D. Liu, and E. Vanden-Eijnden. Nested stochastic simulation
algorithm for chemical kinetic systems with disparate rates. J. Chem.
Phys., 123:194107, 2005.

[10] E. B. Flanagan, L. A. Ball, and G. W. Wertz. Moving the glycoprotein
gene of vesicular stomatitis virus to promoter-proximal positions accel-
erates and enhances the protective immune response. J. Virol., 74(17):
7895–7902, September 2000.

29



[11] D. T. Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J. Comput.
Phys., 22:403–434, 1976.

[12] D. T. Gillespie. A rigorous derivation of the chemical master equation.
Physica A, 188:404–425, 1992.

[13] D. T. Gillespie. The chemical Langevin equation. J. Chem. Phys., 113
(1):297–306, 2000.

[14] J. Goutsias. Quasiequilibrium approximation of fast reaction kinetics in
stochastic biochemical systems. J. Chem. Phys., 122(18):184102, May
2005.

[15] M. Griffith, T. Courtney, J. Peccoud, and W. Sanders. Dynamic parti-
tioning for hybrid simulation of the bistable HIV-1 transactivation net-
work. Bioinformatics, 22(22):2782–2789, 2006.

[16] E. L. Haseltine and J. B. Rawlings. Approximate simulation of coupled
fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys.,
117(15):6959–6969, October 2002.

[17] L. E. Iverson and J. K. Rose. Localized attenuation and discontinuous
synthesis during vesicular stomatitis virus transcription. Cell, 23(2):
477–484, February 1981.

[18] J. A. M. Janssen. The elimination of fast variables in complex chemical
reacions. II. Mesoscopic level (reducible case). J. Stat. Phys., 57(1/2):
171–185, 1989.

[19] K. Lim, T. Lang, V. Lam, and J. Yin. Model-based design of growth-
attenuated viruses. PLoS Comput. Biol., 2(9):e116, September 2006.

[20] E. A. Mastny, E. L. Haseltine, and J. B. Rawlings. Two classes of quasi-
steady-state model reductions for stochastic kinetics. J. Chem. Phys.,
127(9):094106, September 2007.

[21] C. V. Rao and A. P. Arkin. Stochastic chemical kinetics and the quasi-
steady-state assumption: Application to the Gillespie algorithm. J.
Chem. Phys., 118(11):4999–5010, March 2003.

30



[22] J. Rose and M. Whitt. Rhabdoviridae: The viruses and their replication.
In D. Knipe and P. Howley, editors, Fields Virology, volume 1, pages
1221–1244. Lippincot Williams & Wilkins, Philadelphia, 4th edition,
2001.

[23] H. Salis and Y. Kaznessis. Accurate hybrid stochastic simulation of a
system of coupled chemical or biochemical reactions. J. Chem. Phys.,
122(5):054103, February 2005.

[24] H. Salis and Y. Kaznessis. An equation-free probabilistic steadystate
approximation: Dynamic application to the stochastic simulation of bio-
chemical reaction networks. J. Chem. Phys., 123:214106, 2005.

[25] A. Samant and D. G. Vlachos. Overcoming stiffness in stochastic sim-
ulation stemming from partial equilibrium: A multiscale Monte Carlo
algorithm. J. Chem. Phys., 123:144114, 2005.

[26] A. Samant, B. Ogunnaike, and D. Vlachos. A hybrid multiscale Monte
Carlo algorithm (HyMSMC) to cope with disparity in time scales and
species populations in intracellular networks. BMC Bioinf., 8(1):175,
May 2007.

[27] C. C. Simonsen, S. Batt-Humphries, and D. Summers. RNA synthesis of
vesicular stomatitis virus-infected cells: in vivo regulation of replication.
J. Virol., 31(1):124–132, July 1979.

[28] A. Spirin. Ribosome structure and protein biosysthesis. Ben-
jamin/Cummings Publication Company, 1986.

[29] R. Srivastava, L. You, J. Summers, and J. Yin. Stochastic vs. deter-
ministic modeling of intracellular viral kinetics. J. Theor. Biol., 218:
309–321, 2002.

[30] N. G. van Kampen. Stochastic Processes in Physics and Chemistry.
Elsevier Science Publishers, Amsterdam, The Netherlands, 2nd edition,
1992.

[31] L. P. Villarreal, M. Breindl, and J. J. Holland. Determination of molar
ratios of vesicular stomatitis virus induced RNA species in BHK21 cells.
Biochemistry, 15(8):1663–1667, April 1976.

31



[32] L. S. Weinberger, J. C. Burnett, J. E. Toettcher, A. P. Arkin, and D. V.
Schaffer. Stochastic gene expression in a lentiviral positive-feedback
loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell, 122(2):
169–182, July 2005.

[33] M. Werner. Kinetic and thermodynamic characterization of the interac-
tion between Q beta-replicase and template RNA molecules. Biochem-
istry, 30(24):5832–5838, 1991.

[34] Y. Zhu, A. Yongky, and J. Yin. Growth of RNA virus in single cells
reaveals a broad fitness distribution. To appear in Virology, e-publication
ahead of print, December 2008.

32


	Introduction
	Stochastic Background
	Elements of VSV Biology

	Reactions
	Transcription
	Translation
	Replication
	Host Factors
	Delayed Stochastic Simulation Algorithm (DSSA)
	The Langevin Equation
	QSSA on the N Protein
	Delayed Replication Reaction

	Simulation Strategy
	Hybrid Langevin Implementation

	Simulation Results
	Discussion

